

EINSTEIN thinks logical, therefore energy savings come first!

✓ On the demand side✓ On the supply side

STEP 7: Conceptual design of saving options and draft energy targeting

STEP 7: Conceptual design of saving options and draft energy targeting

Energy Saving steps:

- 1. Reduction of process heat demand through Process Optimisation
- 2. Reduction of required heat supply by Heat Recovery and Process Integration
- **3.** Cogeneration and Polygeneration
- 4. Efficient Energy Supply technologies and Renewable energy sources under exergetic considerations

STEP 7.1 and 7.2: Process Optimization and demand side savings

✓ GOAL

- Energy improvements of production processes
- Improvement of the energy demand of buildings

Sources of energy efficiency measures

- BAT Reference Documents (BREFs)
- EINSTEIN report on "Energy Auditing Practices and Tools" (incl. tools for building optimisation)
- Einstein process optimisation database …

STEP 7.1 and 7.2: Process Optimization and demand side savings

..a Database for energy efficiency

dit

ndustry

✓ General saving measures / methodologies

• E.g. cascaded use of washing water etc.

✓Different technologies for 1 unit operation

 E.g. evaporation – thermal vapour recompression, mechanical vapour recompression, vacuum evaporation etc.

Efficiency measures that can be applied to specific technologies

- E.g. Waste heat recovery, optimised regulation in drying
- Applicability of technologies/measures to different sectors
 - Enabling synergies between solutions applied in different sectors

STEP 7.1 and 7.2: **Process Optimization for buildings**

buildin g

dit

industry

- EINSTEIN uses building heating demands as input for system \rightarrow optimization.
- \rightarrow Referred to the building, the services and the users BASIC and ACTIVE measures can be defined.

natural cooling

STEP 7.1 and 7.2: Process Optimization for buildings

The climate zones in the EU can be divided into *warm*, *temperate* and *cool* zones depending on:

- Iowest and average outside temperature during heating period
- vaverage outside temperature during summer
- heating degree days
- ✓ solar radiation

STEP 7.1 and 7.2: Process Optimization for buildings

...for heating and cooling in different climate zones

* Source: AEE INTEC, verified by SQUARE

Steps 7.3 and 7.4: theoretical HR **7** potential and pre-design HX and storage

- 7.3. Heat Recovery POTENTIAL
 - Analysis of a minimal external heat and cold demand
- Potential for heat recovery

 \checkmark

 \checkmark

udit

ndustr

- 7.4. Design of heat exchanger networks:
 - Design and optimization of a heat exchanger network
 - Reduced energy demand and
 - required temperature levels \rightarrow
 - basis for exergetic optimized
 - integration of heat and cold supply

Steps 7.3 and 7.4: theoretical HR **formula and pre-design HX and storage**

- Placement of the design of the heat recovery system within the audit methodology:
 - Prior to new energy supply design
 - Possible re-calculation with new supply systems
 - Energy streams based on heat/cold generation equipment could change

✓Goal:

udit

Theoretical potential of energy savings by heat recovery (prior to energy supply systems design)

Save fuels and avoid over-dimensioning of supply equipment

Methodology

- From energy supply and processes to "streams"
- Pinch Analysis
 - Hot and cold composite curve
 - Grand composite curve

✓ Results:

- Theoretical heat recovery potential
- Necessary external heat/cold supply at the different temperature levels

"Cold streams" need to be heated

FRGY

Any process in which energy input is needed for heating the process flow/stream

"Hot streams" need to be cooled

Any process in which energy input is withdrawn for cooling the process flow/stream

Composite Curves:

Adding of vectors representing the energy demand in power and temperature (= energy streams")

ENERGY

EUROP

Hot and cold composite curves

- ✓ Pinch temperature separation of production system in two halves:
 - Above pinch no cooling is necessary
 - Below pinch no heating is necessary
 - No energy should be transferred across the pinch (efficient thermodynamic use of energy)

E U R O P

ENT ENERGY

Grand Composite Curve (GCC)

✓It shows

audit

ndustry

- The ideal external energy supply necessary to heat up or cool down the streams.
- At which temperature the external resource should be supplied

Thermal ener industry audit

\checkmark Choice of ΔT_{min} for a first concept

- ✓ In a counter current heat exchanger the final temperature of the cold stream can at a maximum reach the start temperature of the hot stream minus ΔT_{min} .
- ✓ In a counter current heat exchanger the final temperature of the hot stream can at a minimum reach the start temperature of the cold stream plus ΔT_{min}.

Economic optimisation

 Investment costs: surface area of heat exchange, temperature, pressure, material of heat exchanger, connections etc.

 Energy savings: heat transfer coefficient (flow characteristics, fluid parameters, material etc.), logarithmic temperature difference between the fluids, surface area of heat exchange

ENERGY

ENERGY

UROP

500

0

1500

Source: T. Gundersen. IEA. Process Integration, www.tev.ntnu.no/iea/pi

Streams in EINSTEIN - Energy flows

udit

b

industry

The following enthalpy streams will be used in the pinch analysis (list is not exhaustive):

✓ Processes

- Start up stream (heating up at startup)
- Circulation streams (heating of inflowing media)
- Maintainance stream (losses and evaporation)
- Waste heat streams
 - Hot products
 - Hot waste water
 - Vapours
 - Etc.

The following enthalpy streams will be used in the pinch analysis (list is not exhaustive):

Distribution Lines

- Condensates
- Waste streams from pipes (hot air, hot waste water,...)
- Boiler feed-water Preheating
- Etc.
- ✓Equipment
 - Boilers
 - Off gas
 - Combustion Air
 - Waste heat of Chillers
 - Heat demand of heat pumps
 - Etc.
- ✓Electric equipment
 - Waste heat of electric compressors

- From energy supply and processes to streams
 - Process = Washing
 - Volume of vessel: 5 m³
 - Cold water Temperature = 10° C
 - Process Temperature = 60° C
 - Cold water input = 10 m³/d
 - Heat input during operation (heating of input water and thermal losses, evaporation negligible) = 90 kW
 - Operation schedule:
 - Start-Up 6:00 h to 6:30 h
 - Continuous operation 6:30 h to 16:00 h
 - Wastewater temperature = 50° C
 - Temperature to which the wastewater can be cooled down: 5° C.

From energy supply and processes to streams

Process = Washing

udit

ndustry

→ Enthalpy Streams

Name	Start Temp.	End Temp.	Mass flow	Required Power / Waste Heat	Operation Schedule
	°C	°C	kg/h	kW	
StartUp	10	60	10.000	582	6:00 - 6.30
Heating continuous inflowing water	10	60	1.053	61	6:30 to 16:00
Additional heat input during operation for thermal losses	60	60	-	29	6:30 to 16:00
Wastewater	50	5	1.053	55	6:30 to 16:00
Wastewater after machine stop	50	5	10.000	524	16:00 – 16:30

Goal:

- Heat integration with a holistic approach
- Design of a heat exchanger network

Methodology

- Heat exchanger network design proposal based on pinch analysis
- Heat Exchanger Simulation

✓ Results:

- ✓ Heat Exchanger Network
- Resulting energy demand curves and energy availability curves (yearly energy demand, temperature levels)

General Criteria for a HEX network:

- Use of heat at a certain temperature level for heating other streams to a similar temperature level
- ✓ Power of heat exchange
- ✓ Total transferable energy over the heat exchangers
- Heat integration within the same process should be given priority direct use of waste heat
- Use of heat that has to be cooled down by a cooling machine for heating up processes increase the energy savings by the heat exchange, as the external energy supply of the heat source and the heat sink can be saved
- Distance between the heat source (hot stream) and heat sink (cold stream)
- Practical issues, such as fouling factors, necessity of indirect heat exchange via a heat transfer media, temperature and pressure aspects etc.
- ✓ Investment costs and saved energy costs

EINSTEIN's HX selection algorithm:

Based on Pinch Algorithm (Kemp et al., 2007):

HX Simulation in EINSTEIN:✓ Basic Equations:

$$Q = m_{cs} * cp_{cs} * \Delta T_{cs} = m_{hs} * cp_{hs} * \Delta T_{hs}$$
$$\frac{\Delta T_{cs}}{\Delta T_{hs}} = \frac{m_{hs} * cp_{hs}}{m_{cs} * cp_{cs}}$$
$$Q = U * A * \Delta T_{\log,hx}$$

$$\Delta T_{\log,hx} = \frac{(T_{hs,in} - T_{cs,out}) - (T_{hs,out} - T_{cs,in})}{\ln(\frac{(T_{hs,in} - T_{cs,out})}{(T_{hs,out} - T_{cs,in})})}$$

HX Simulation in EINSTEIN:

Several sources and sinks can be combined in one heat exchanger:

Hot and cold composite curve, grand composite curve and proposed heat exchanger network

Standard values for ΔT_{min} and the heat transfer coefficient α :

Physical state	ΔTmin [°C]	Heat transfer coefficient α [W/m²K]
Liquid	5	5.000
Gaseous	10	100
condensation	2,5	10.000

Heat exchanger types and overall heat transfer coefficients :

Heat exchange	Heat exchanger type chosen in EINSTEIN	Overall Heat transfer coefficient (material = stainless steel) α [W/m ² K]	Average values given in VDI Heat Compendia [W/m²K]
Liquid - Liquid	Plate heat exchanger	2.143	1000 – 4000
Gaseous – liquid	Shell&tube	97	15-70
Condensation – liquid	Shell&tube	2724	500 - 4000
Gaseous – gaseous	Shell&tube	50	5-35
Condensation – gaseous	Shell&tube	99	20 - 60