IKI SOLARPAYBACK TRAINING ON SOLAR PROCESS HEAT IN SOUTH AFRICA

Feasibility Procedures

Fanny Hübner

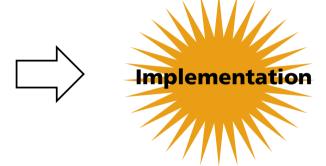
Dr. Wolfgang Kramer

Fraunhofer Institute for Solar Energy Systems ISE

Online, January 27-28, 2021

www.ise.fraunhofer.de

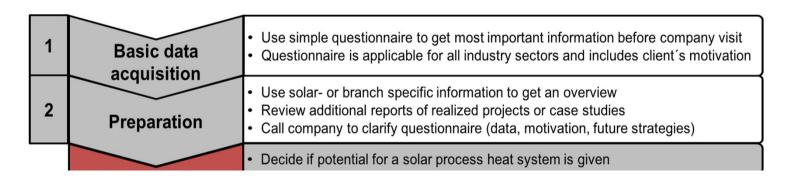
- Pre-feasibility procedures
- Feasibility procedures
- Required Data
- In-situ measurements
- Examples


- Pre-feasibility procedures
- Feasibility procedures
- Required Data
- In-situ measurements
- Examples

Prefeasibility and Feasibility Procedures

General procedure

- Definition of solar process heat potential
 - Pre-evaluation
- Identification of possible integration points
 - Technical analysis
 - Economic analysis
- Recommendation for solar integration



Prefeasibility and Feasibility Procedures

Pre-feasibility assessment

- Steps 1-2
 - Potential for solar process heat

[1]

- Pre-feasibility procedures
- Feasibility procedures
- Required Data
- In-situ measurements
- Examples

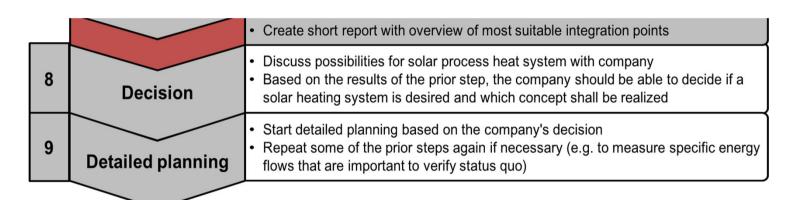
Prefeasibility and Feasibility Procedures

Feasibility Study

- Steps 3-7
 - Define possible integration points

		Decide if potential for a solar process heat system is given
3	Company visit	 Get overview of production site, heat consumers, and heat supply system together with responsible technical staff of company Find out about future plans and strategy of the company Collect, draw and discuss sketches (production flow, possible integration points, roof area, location for storages, etc.) with technical staff
4	Analysis of status quo	 Crosscheck gathered data with available benchmarks Draw energy balance and flow sheet of production, try to estimate energy consumption of single production sections or processes Actual depth of this analysis is based on available data and resources of auditor
5	Process optimization & energy efficiency	 Investigate energy saving potential for processes (installations, control, etc.) Check heat recovery potential within utilities (supply of heat, cold, compr. air) Effort and depth of this step is based on the knowledge and resources of auditor
6	Identification of integration points	 Apply the following criteria to all production processes with heat demand: integration temperature level, load profile, amount of thermal energy consumed, effort for integration, sensitivity to changes, and possible solar fraction Rank heat consumers based on these criteria
7	Analysis of integration points	 Identify suitable collector type, necessary area and storage volume, proposed solar fraction and yield, overall costs (solar heating system, integration and installation) for the integration points of your ranking from prior step Compare technical and economical facts of your ranking Analysis can be done by simulations or estimative figures
		Create short report with overview of most suitable integration points

[1]



Prefeasibility and Feasibility Procedures

Conclusion

- Steps 8-9
 - Decision and detailed planning

[1]

- Pre-feasibility procedures
- Feasibility procedures
- Required Data
- In-situ measurements
- Examples

General Information

- Basic company information
 - Location
 - Branch
 - Products
 - Annual Production
 - Operation period
 - Main heating/cooling requirements
 - Main processes
 - Nr. employees

Basic Company Information

The beverage company is situated with approximately employees. At this site, juices and nectars are produced out of fresh fruits. The production is running 24 hours a day (three shifts of eight hours), seven days a week, 332 days a year.

Main heat requirements of the company arise in the heating and cooling of processed beverages. Two gas driven steam boilers are producing slightly superheated steam, which is led to different heat exchangers. When the steam condenses inside the heat exchangers, heat is transferred to a hot water loop. By another heat exchanger, the hot water heats up the beverages in order to pasteurize the product. The heated product stream is subsequently cooled down in a cold water-to-beverage heat exchanger. The cold water with a temperature of 9°C is provided by different chillers with screw compressors. Another cold consuming process is the internal production of plastic bottles. The produced bottles are cooled down with a cold water stream. The heat sink of this process is generated by the already mentioned chillers as well.

Therefore, the company has three main production lines:

- Production of plastic bottles
- Process
- Process

No details concerning installed efficiency or heat recovery measures are given.

Contact Data

Contact information

Contact information:			
name of the company			
city			
name of contact person			
position of contact person in the company			
address			
Telephone No			
Fax No			
E-mail			

Production and Energy Cost Data

 For each product: (include monthly consumption info when available)

Production information:				
Name of product	name			
Type of product	description	e.g. fruit juice		
Annual production	Unit			
measurement unit for product quantity	Unit			

 For each energy source: (include monthly consumption info when available)

Energy source information:				
Energy source	name	e.g. diesel, natural gas, LPG, electricity		
Anual consumption	unit			
LCV (when applicable)	unit			
Unit cost	Unit			
Annual cost	Unit			

Steam/Heat Generation

Equipment =	Example_boiler_type 1		
Nr. of same units =	e.g., 3		

Technical data of equipment:						
Fuel =	e.g., natural gas					
Nominal p	oower = ? kW (?)					
Nominal fuel consumption =				?		kW (?)
Average usage factor =				?		%
Daily usage profile =				?		h/day
Yearly usage profile =				?	da	ays/year

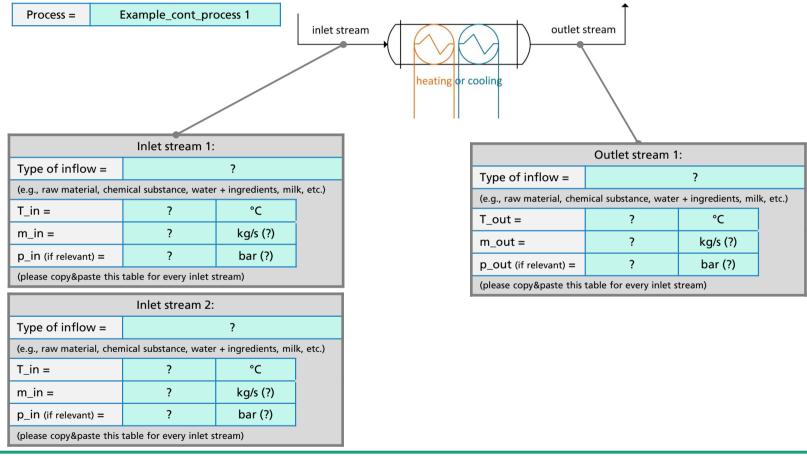
Heeat recovery from exhaust:					
Economizer in	nstalled?		Y/N		
Preheated me	dium		Water / air		
Preheated mediu	m (cold strea	am)			
T_inlet =	?	°C			
T_outlet =	?	°C			
Mass flow		kg/s			
Exhaust gas					
T_outlet =	?	°C			

heating equipment

Stream connection of equipment:						
Generated heat transfer medium =		e.g., steam				
(e.g., high/low pr	(e.g., high/low pressure steam, hot water, hot air, thermal oil, etc.)					
T_heat =	?	°C				
T_return =	?	? °C				
p_heat (if relev	ant) =		?	bar (?)		
p_return (if rel	evant) =		?	bar (?)		

Please indicate if heating system is linked:

- directly to a specific process (which one?)
- or to a distribution line (which one?)


Additional information concerning connection:

(regarded essential to understand energy stream network)

© Fraunhofer ISE FHG-SK: ISE-INTERNAL

Input for Every Process

© Fraunhofer ISE FHG-SK: ISE-INTERNAL

Solar Related Data

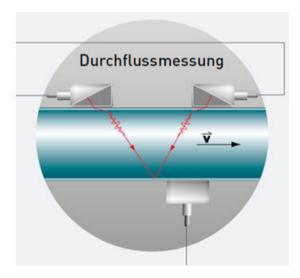
- Information related with solar system installation requirements
 - Available area(s), location, inclination and orientation
 - Distance to possible heat delivery points (boiler, processes)
 - Access to available area
 - Foreseeable shadings
 - Rooftop type and resistance (minimum 25 40 kg/m2)
 - Access to water and electricity infrastructure
 - Existing solar field and components
 - Existing (unused?) thermal storage

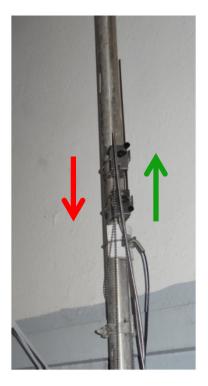
- Pre-feasibility procedures
- Feasibility procedures
- Required Data
- In-situ measurements
- Examples

- Some companies have Energy Management Systems (EMS)
 - Relies on the installation of fixed equipment
 - Costly and takes a lot of time
- Still required information is often not available
 - Assumptions can be made
 - Measurements can be made with portable measurement devices
- Required measurement are mostly fluid flows (gas or liquid) and temperatures

Portable Equipment: Air Flow

- Map flow profile (critical in larger sections)
- Objective: calculation of average airflow velocity





Portable Equipment: Fluid Flow

- Ultrasonic flow meter
 - Assure piping is full (installation on lower section)
 - Assure similar flow conditions between emitter and receiver



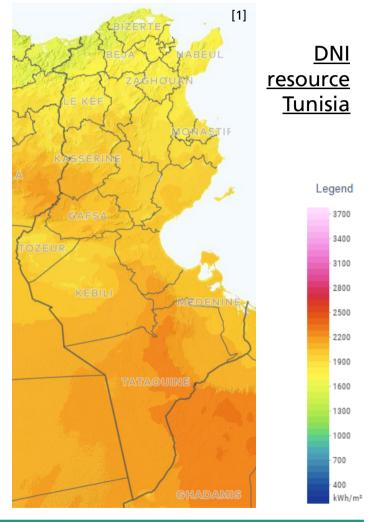
Portable Equipment: Temperature

- Thermocouples or PT100
 - Assure surface contact (thermal paste)
 - Assure insulation
 - Protection against radiation gains

Portable Equipment: Humidity

Psychrometer or hygrometer

- Pre-feasibility procedures
- Feasibility procedures
- Required Data
- In-situ measurements
- Examples

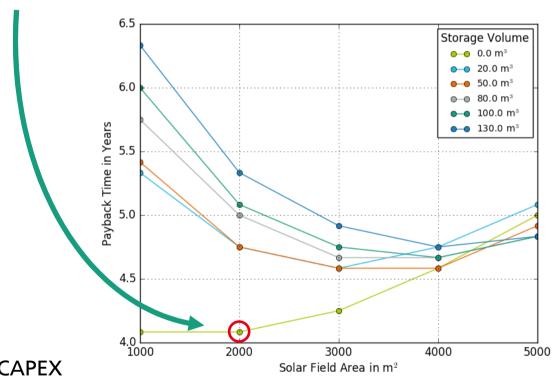


Examples

Companies

	Company 1	Company 2
Industry	Dairy	Textile
Annual energy consumption	20 GWh	24 GWh
Consumed thermal energy	49 %	51 %
Steam temperature	170 °C	170 °C
Steam pressure	8 bar	8 bar
Schedule	7 days/week	6 days/week
Current energy source	LPG	Heavy Oil
Current energy price	4.5 €Ct/kWh	2.5 €Ct/kWh

Suitable conditions for concentrating solar process heat!

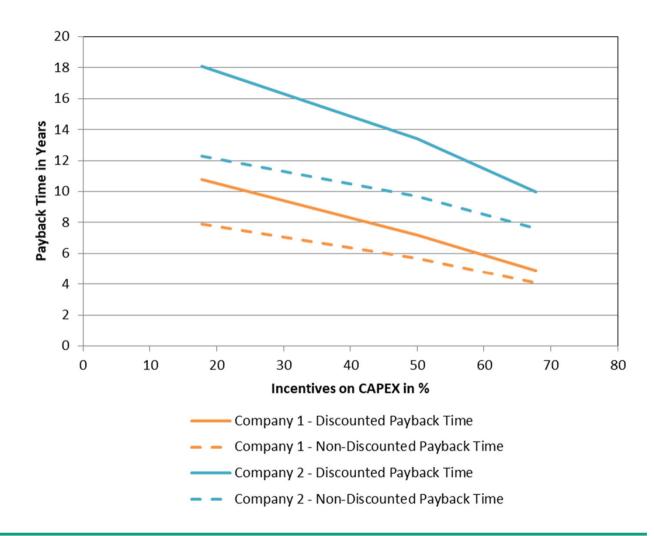


Examples

Techno-economic analysis

- Technical simulation study
 - for different solar field sizes
 - for different storage sizes
- Economical analysis based on
 - Simulation results
 - Financial parameters
 - Lifetime: 20 years
 - Solar field costs: 450 €/m²
 - Discount rate: 8 %
 - Variation of incentives: 20 80 % of CAPEX

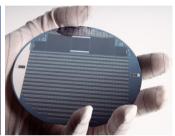
Selection of ideal system design



Examples

Financial results

- Payback times are
 - 4 8 years for company 1
 - 8 12 years for company 2


Thank you for your Attention!

Fraunhofer Institute for Solar Energy Systems ISE

Fanny Hübner

Dr. Wolfgang Kramer

www.ise.fraunhofer.de

fanny.huebner@ise.fraunhofer.de